Butterfly topologies: new expanded carbon-rich organometallic scaffolds

Matthew Laskoski, Gaby Roidl, Holly L. Ricks, Jason G.M. Morton, Mark D. Smith, Uwe H.F. Bunz*
Department of Chemistry and Biochemistry, USC NanoCenter, The University of South Carolina, Columbia, SC 29208, USA

Received 7 February 2003; received in revised form 10 February 2003; accepted 10 February 2003

Abstract

Starting from either (tetraethynylcyclobutadiene)cyclopentadienylcobalt or [1,2-diethynyl-3,4-(2-dioxanyl)cyclobutadiene]cyclopentadienylcobalt a sequence of copper and Pd-catalyzed couplings of the Eglinton and the Heck-Cassar-SonogashiraHagihara type furnishes five bow-tie shaped doubly annelated dehydroannulenes, the largest of which featuring a (formal) 7,8:13,14:25,26:31,32-tetra(4'alkyl-1', 2^{\prime}-benzo)tricyclo[18,16, $0^{2,19}$]hexatricosa-3,5,9,11,15,17,21,23,27,29,33,35-dodecayne-1,7,13,19,25,31-hexaene hydrocarbon ligand with a cyclopentadienyl-cobalt stabilized cyclobutadiene complex as its central unit. Single crystal X-ray structures of two of the smaller butterflies are reported and their surprising solid-state packing is discussed herein.

(C) 2003 Published by Elsevier Science B.V.

Keywords: Alkynes; Dehydro[14]annulenes; Dehydro[18]annulenes; Cyclobutadiene complexes; Cobalt; Pd-catalysis; Copper

1. Introduction

We give herein a full account of the synthesis and structural characterization of carbon-rich organometallic butterflies that are based upon a central (tetraethynylcyclobutadiene)cyclopentadienylcobalt unit [1a, 1b]. The chemistry of carbon-rich-materials [2-7] has made great strides during the last 20 years. Molecules such as the hexaethynylbenzenes [3], dreams once, are easily accessible now and routinely incorporated into larger carbon-rich structures [6]. The 'quantum leap' in methodology occurred when the Pd-catalyzed reaction of aryl halides to terminal alkynes was reported in 1975 by Heck, Cassar, and Sonogashira and Hagihara [8]. This procedure allows the direct attachment of alkyne units to arenes, which prior was only possible via lengthy

[^0]synthetic sequences that involved multiple intermediates. A typical 'pre-Pd-age' sequence would have converted an aromatic aldehyde in three steps under forcing conditions and in only moderate yields into an alkyne. The phenomenal success of the Pd-catalyzed couplings was enhanced by other developments in alkyne chemistry that play an important role [9-11].

Dehydroannulenes have commanded attention because of their attractive structures and their exciting properties that include but are not restricted to supramolecular organization/aggregation, and their use as electronic materials [$6 \mathrm{~g}, 12-15$]. While purely organic, i.e. $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$-containing dehydroannulenes are widespread, their organometallic congeners have found less attention [16]. We have a long-standing interest in carbon-rich organometallics [17] and report herein the synthesis and characterization of large butterfly-shaped, fused double dehydroannulenes that feature a central tetraethynylated cyclobutadiene complex [18]. Such butterfly topologies are speculated to be critically important in the primary stages of the formation of fullerenes in the gas phase [19].

2. Results and discussion

2.1. Syntheses

The parent butterfly 4 was made by the Pd-catalyzed coupling of (tetraethynylcyclobutadiene)cyclopentadienylcobalt (1) with diiodobenzene (2) to give the open precursor (3) in an overall yield of 4.2% after a second Pd-catalyzed coupling to trimethylsilylacetylene (Scheme 1). Desilylation of $\mathbf{3}$ is followed by ring closing, utilizing the Vögtle variant [20] of the Eglinlon coupling [10] and the title compound 4 forms in a 94% yield.

The complex 4 was only sparsely soluble in organic solvents; a ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum could be obtained in THF- d_{8}, however, it was not possible to grow a single crystalline specimen useful for X-ray diffraction. To increase the solubility of the butterflies, and obtain derivatives that would crystallize better, a second, stepwise synthetic approach was developed. Diyne (5) [18b] was transformed into 7 by standard Pd-methodology. Desilylation and ring closure furnishes 7 in a 50% overall yield (Scheme 2). The intermediate 7 was deprotected and subjected to reactions $1-3$ with arene 6 (9a) or alkene $\mathbf{8}(\mathbf{9 b})$. This sequence furnished the unsymmetrical butterfly 9b (57\%) and the symmetrical butterfly 9a (16%). While the butterfly 9b was quite unstable, 9a was stable and soluble in hexane, dichloromethane, and THF. Crystallization from dichloromethane furnished a suitable single crystalline specimen (vide infra). To obtain butterflies that incorporate the larger dehydro[18]annulenes, a similar stepwise approach was utilized. A dehydroannulene moiety was attached to $\mathbf{1 0}$ by coupling to $\mathbf{1 1}$ in a Cadiot Chodciewicz [21] type protocol (Scheme 3). Subsequent deprotection is followed by ring closure to afford the dehydroannulenes ($\mathbf{1 2 a}, \mathbf{b}$) with isopropyl (28%) or butyl (38%) substituents. Deprotection of the acetal rings in

Scheme 1. Synthesis of the parent cyclobutadiene (cyclopentadienyl) cobalt based butterfly 4.

Scheme 2. Synthesis of the butterflies $9 \mathbf{a}$ and $9 \mathbf{9 b}$.

Scheme 3. Synthesis of the large butterfly precursor 14.
12 by para-toluenesulfonic acid (TsOH) was facile and the formed intermediates were immediately subjected to an Ohira-Taber-Bestmann [11] alkynylation with 13. The tetraethynylcyclobutadiene complexes ($\mathbf{1 4 a , b}$) were obtained in 17 and 18\% overall yield starting from 10; they were unstable when isolated and used immediately in the following step.

The strategically important intermediates $\mathbf{1 4 a}, \mathbf{b}$ allowed the attachment of the second dehydroannulene moiety as shown in Scheme 4. The synthesis of the larger butterflies $\mathbf{1 5}$ commences with the coupling of $\mathbf{1 4 a}, \mathbf{b}$ to 11. Deprotection and subsequent ring closure with $\mathrm{Cu}(\mathrm{OAc})_{2}$ in acetonitrile furnishes the large butterflies $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ in 22 and 15% yield. For the synthesis of the mixed butterfly $\mathbf{1 7}$ the diyne $\mathbf{1 4 b}(\mathrm{R}=$ butyl) is coupled to $\mathbf{1 6}$; the TMS-groups are cleaved off by $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the second ring is closed utilizing the $\mathrm{Cu}(\mathrm{OAc})_{2}$ coupling to furnish $\mathbf{1 7}$ in an overall yield of 51% starting from $\mathbf{1 4 b}$

15a $R=i \operatorname{Pr}(77 \%)$
b $\mathrm{R}=\mathrm{Bu}(46 \%)$

Scheme 4. Synthesis of the enlarged butterflies $\mathbf{1 5}$ and 17.
($\mathrm{R}=$ butyl). Attempts to obtain a single crystalline specimen of either derivative of $\mathbf{1 5}$ failed, but it was possible to obtain a suitable single crystal of $\mathbf{1 7}$ from dichloromethane-hexane mixtures. Crystalline samples of the butterflies $\mathbf{1 5}$ and $\mathbf{1 7}$ are stable under ambient conditions for several months.

2.2. Single crystal structures of $9 \mathbf{a}$ and $\mathbf{1 7}$

To gain a better understanding of the topology and the supramolecular ordering of the butterflies in the solid state we obtained a single crystal X-ray structure showing that the large hydrocarbon ligand in 9 a is bent outwardly in the solid state. Fig. 1 displays the ORTEP of 9a. The structural details of the large hydrocarbon

Fig. 1. ORTEP representation of $\mathbf{9 a}$.
ligand have been discussed in depth in the preliminary communication and will not be repeated here [1a,1b].

We investigated the solid state ordering of $\mathbf{9 a}$ and were surprised to find a tetragonal packing of the molecules with a space group $I 4_{1}$, quite unusual for an organometallic compound. Fig. 2 shows a packing diagram of the small butterfly $9 \mathbf{a}$. The molecules are stacked in an $A B$ scheme in the vertical c-axis. In two different layers, the molecules are rotated by 90° with respect to each other. In a single plane (Fig. 2) the molecules are arranged as chessboard tiles in which every second row of 'tiling' is missing.

The second layer above or below fills the 'empty' spaces above and below the squares in the middle. The net effect is a striking supramolecular arrangement of $\mathbf{9 a}$ in the solid state. All of the organometallic cyclobutadiene(cyclopentadienyl)cobalt units are arranged in a square grid-like pattern that repeats the tetragonal symmetry of the cyclobutadiene complex nicely. In Fig. 3 the ORTEP representation of the unsymmetrical butterfly 17 is shown. The molecular structure is the expected combination of a dehydro[14]annulene and a dehydro[18]annulene. The bond lengths and bond angles are in excellent agreement with published values for the corresponding sub-structures [1]. While 9a is significantly bent, the large hydrocarbon ligand of $\mathbf{1 7}$ is planar. It was of interest to see if the planarity has an electronic reason or is due to a packing effect. Calculation of $\mathbf{1 7}$ utilizing PM3 TM (Wavefunction, Spartan Pro, Windows 2000) shows that the large hydrocarbon ligand is as bent (21.4° for the large dehydroannulene and 17.5° for the small one) as the one in 9 for an isolated molecule in the gas phase. Consequently, the observed planarity in the solid-state structure of $\mathbf{1 7}$ must be due to a packing effect.

The packing of $\mathbf{1 7}$ is somewhat similar to that of $\mathbf{9 a}$, insofar as the molecules are packed on top of each other and rotated by 90°. In Table 1 the cell parameters of the two butterflies are listed; while the a and the b-axes of 9a and $\mathbf{1 7}$ are different, their c-axes are similar. The c axis is the 'layer' axis along which the molecules are stacked on top of each other. The slightly larger c-axis

Table 1
Crystallographic data for $\mathbf{9 a}$ and $\mathbf{1 7}$

	$\mathbf{9 a}$	$\mathbf{1 7}$
Crystal system	Tetragonal	Monoclinic
Space group	$I 4_{1}$	$C c$
$a(\AA)$	$19.156(5)$	$32.447(3)$
$b(\AA)$	$19.156(5)$	$27.437(3)$
$c(\AA)$	$15.842(7)$	$14.042(1)$
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	90	$108.354(2)$
$\gamma\left({ }^{\circ}\right)$	90	90
Volume $\left(\AA^{3}\right)$	$5814(3)$	$11865(2)$
Z	4	8

Fig. 2. Packing of the organometallic butterfly 9a. The packing pattern is such that the hydrocarbon ligands in two adjacent layers are packed in a staggered fashion. The molecules in each layer are rotated by 90° with respect to each other, which gives an overall tetragonal symmetry to this packing arrangement.
of $\mathbf{9 a}$ is due to its larger tert-butyl substituents and the upward bending of the whole hydrocarbon ligand. Both factors contribute to the increased 'thickness' of $9 \mathbf{a}$ compared with $\mathbf{1 7}$ that must be accommodated for by the crystal lattice. In $\mathbf{1 7}$ as well as in $\mathbf{9 a}$, the large

Fig. 3. ORTEP representation of 17.
hydrocarbon ligands, located in a common plane, are oriented perpendicular to each other. The butyl 'tails' of 17 are tucked in-between two layers, into the interstitial space. The main differences in the packing and in the unit cells arise, therefore, from the differing dimensions and shape of the large π-conjugated ligands in 9 a and in 17 (Fig. 4).

Fig. 4. Packing of the unsymmetrical butterfly 17 in the solid-state. Top, view onto the large hydrocarbon ligand. Bottom, layered structure of $\mathbf{1 7}$, The layers are ca. $3.6 \AA$ spaced apart, with the CpCo units and the butyl groups filling the interstitial interlayer spaces.

3. Conclusions

A family of novel butterfly-shaped organometallic double dehydro[14]annulenes and dehydro[18]annulenes has been prepared by a combination of Pd - and Cu catalyzed reactions. These structures are attractive synthetic targets on the way to an all-butadiyne bridged organometallic wheel (see red sub-structure in Fig. 5) [17c, 17d]. More importantly, according to Jarrold [19] all-carbon topologies of the butterfly-type described here could play an important role in the first stages of fullerene formation in the gas phase. The most surprising feature of these organometallic butterflies is their supramolecular ordering in the solid state, the formation of a very unusual tetragonal network. In future we will investigate the self assembly of pyridine containing butterflies and the covalent closure of organometallic wheels.

4. Experimental

4.1. Synthesis of $\mathbf{1 8}$

In a 25 ml oven-dried Schlenk flask, (tetraethynylcyclobutadiene)cyclopentadienylcobalt (1) ($105 \mathrm{mg}, 0.391$ mmol) was dissolved in 5 ml of dry piperidine. To the solution was added $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(14.1 \mathrm{mg}, 20.1 \mu \mathrm{~mol})$, CuI ($3.7 \mathrm{mg}, 20 \mu \mathrm{~mol}$) and 1,2-diiodobenzene (2) (5.00 g , $15.2 \mathrm{mmol})$. The resulting solution was stirred at
ambient temperature for 8 h . The reaction mixture was quenched with water and extracted twice with ethyl ether. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1\right)$ furnished I-1 $(107 \mathrm{mg}, 26 \%)$ as an orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.91-7.89(\mathrm{~m}, 4 \mathrm{H}$, aromatic-H), $7.57-7.56$ $(\mathrm{m}, 4 \mathrm{H}$, aromatic- H$), 7.38-7.34(\mathrm{~m}, 8 \mathrm{H}$, aromatic- H$)$, $7.10-7.06\left(\mathrm{~m}, 8 \mathrm{H}\right.$, aromatic-H), $5.29(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.00, 132.61, 130.10, 129.80, 128.21, 100.71, 95.70, 84.30, 61.18. MS (EI) m / z; Calc. for $\left[\mathrm{M}^{+}\right]\left(\mathrm{C}_{41} \mathrm{H}_{21} \mathrm{CoI}_{4}\right)$ 1079.8, Found 1080.17.

4.2. Synthesis of $\mathbf{3}$

In a procedure analogous to the synthesis of $\mathbf{I}-\mathbf{1}, \mathbf{I}-\mathbf{1}$ $(40,1 \mathrm{mg}, 37.1 \mu \mathrm{~mol})$, (trimethylsilyl) acetylene (1.79 g , $5.88 \mathrm{mmol}),\left(\mathrm{PPh}_{3} \mathrm{PdCl}_{2}(2.0 \mathrm{mg}, 2.9 \mu \mathrm{~mol})\right.$ and $\mathrm{CuI}(1.3$ $\mathrm{mg}, 6.8 \mu \mathrm{~mol})$ were reacted in piperidine (10 ml). Column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:hexane, 9:1) furnished $3(23.2 \mathrm{mg}, 16 \%)$ as a red oil. IR (Neat): v $\left(\mathrm{cm}^{-1}\right) 2989,2159,1483,1250,1098 .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53-7.51,7.47-7.44(\mathrm{~m}, 8 \mathrm{H}$, aro-matic-H), $7.25-7.23(\mathrm{~m}, 8 \mathrm{H}$, aromatic-H), $5.12(\mathrm{~s}, 5 \mathrm{H}$, Cp-H), 0.18 (s, 3611, TMS-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 132.45,132.29,127.77,127.55,126.18$, $124.85,103.41,98.92,92.33,87.78,84.11,61.53,0.20$. MS (EI) m / z; Calc. for $\left[\mathrm{M}^{+}\right]\left(\mathrm{C}_{61} \mathrm{H}_{57} \mathrm{CoSi}_{4}\right) 960.2$, Found 961.4.

18

19

20a

20b

21a R = isopropyl b $R=$ butyl

23

22a $R=$ isopropyl b $R=$ butyl

Fig. 5. Hypothetical covalent network version of the supramolecular assembly formed by the butterfly 9a. The herein synthesized modules are colored black, while the connectors are colored grey. The red center represents an organometallic wheel (Section 3).

4.3. Synthesis of 4

In a 50 ml round bottom flask was placed $\mathbf{3}(23.1 \mathrm{mg}$, $24.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(50.0 \mathrm{mg}, 0.360 \mathrm{mmol})$ in methanol (1 ml) and THF (2 ml). The resulting solution was stirred at ambient temperature for 8 h before being quenched with water and ethyl ether. The water layer was separated and extracted with ethyl ether (50 ml). The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo to yield a dark red oil. To the oil, in a 500 ml round bottom flask, was added $\mathrm{Cu}(\mathrm{OAc})_{2}(1.00 \mathrm{~g}, 5.51 \mathrm{mmol})$ and acetonitrile (200 ml). The resulting mixture was heated to $80^{\circ} \mathrm{C}$ for 6 h . The solvent was removed in vacuo, the resulting mixture redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a silica gel plug. The solvent was removed in vacuo and column chromatography ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes, 1:1) furnished $4(14.1 \mathrm{mg}, 94 \%)$ as a dark red micro-crystalline solid. Melting point (m.p.): decomposition was observed before melting. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2924, 2361, 2342, 1458. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.73$ (dd, 4 H , ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}$, aromatic-H), $7.52(\mathrm{dd}$, $4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}$, aromatic-H), 7.42 (quint, $8 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}$, aromatic-
H), 5.01 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}$). ${ }^{13} \mathrm{C}$-NMR (100 MHz , THF- d_{8}): $\delta 131.81,131.17,129.99,129.90,128.57,124.33,93.48$, $90.21,84.61,80.00,68.21,62.83$. Elemental analysis: Calc. C, 88.02; H, 3.17. Found: C, 87.15 ; H, 3.20%.

4.4. Synthesis of $\mathbf{1 9}$

In a procedure analogous to the synthesis of $\mathbf{3}, \mathbf{5}(85.0$ $\mathrm{mg}, 0.146 \mathrm{mmol}$), 3-trimethylsilylethynyl)-4-iodo-tertbutylbenzene (6) ($140 \mathrm{mg}, 0.393 \mathrm{mmol}$), $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}$ $(2.1 \mathrm{mg}, 2.9 \mu \mathrm{~mol}), \mathrm{CuI}(1.3 \mathrm{mg}, 6.8 \mu \mathrm{~mol})$ were reacted in piperidine (1 ml). Column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 9: 1$) furnished $\mathbf{1 9}(92.1 \mathrm{mg}, 61 \%)$ as an orange oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2924,2844,2367,2333$, 1461, 1237. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.9 \mathrm{~Hz}$, aromatic-H), $7.35\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.1\right.$ Hz , aromatic-H), $7.24\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=\right.$ 1.9 Hz , aromatic-H), $4.95(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 1.23(\mathrm{~s}, 18 \mathrm{H}, t-$ butyl), 1.10 ($\mathrm{s}, 42 \mathrm{H}$, TIPS-H), 0.19 (s, 18H, TMS-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.04,132.23,129.42$, 125.44, 124.36, 123.59, 104.09, 100.84, 97.87, 96.69, $92.02,87.01,83.81,61.76,61.50,34.72,30.98,18.69$, 11.09, 0.07. MS (EI) m/z; Calc. for $\left[\mathrm{M}^{+}\right]\left(\mathrm{C}_{65} \mathrm{H}_{89} \mathrm{CoSi}_{4}\right)$ 1040.5373, Found: $1040.5380(E=2.3 \mathrm{ppm})$.

4.5. Synthesis of 7

In a procedure analogous to the synthesis of $\mathbf{4}, 19$ $(0.128 \mathrm{~g}, 0.960 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.240 \mathrm{~g}, 1.74 \mathrm{mmol})$ were reacted in methanol (2 ml) and THF (5 ml). After aqueous workup and isolation of the desilylated intermediate, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.480 \mathrm{~g}, 5.51 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}$ $(50 \mathrm{ml})$ were added and the resulting mixture heated to $80^{\circ} \mathrm{C}$ for 8 h . Column chromatography (SiO_{2}; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes, $4: 1$) furnished $7(87.1 \mathrm{mg}, 82 \%$) as a dark red oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2943, 2852, 2338, 2143, 1462, 1246. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.49$ (d, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2 \mathrm{~Hz}$, aromatic-H), $7.44(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.9 \mathrm{~Hz}$, aromatic-H), $7.38\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2\right.$ $\mathrm{Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.9 \mathrm{~Hz}$, aromatic-H), $4.93(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H})$, 1.31 (s, 18H,t-butyl), $1.14\left(\mathrm{~s}, 42 \mathrm{H}\right.$, TIPS-H). ${ }^{13} \mathrm{C}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.80,130.48,127.13,126.64$, 126.32, 123.40, 100.78, 96.97, 92.21, 84.13, 83.81, 83.60, 61.96, 61.38, 34.90, 30.99, 18.70, 11.11. MS (EI) m / z; Calc. for $\left[\mathrm{M}^{+}\right]\left(\mathrm{C}_{59} \mathrm{H}_{71} \mathrm{CoSi}_{2}\right)$ 894.4426, Found: 894.4401\%.

4.6. Synthesis of 20a

In a 100 ml round bottom flask, $7(98.0 \mathrm{mg}, 0.110$ $\mathrm{mmol})$ and $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(0.300 \mathrm{~g}, 10.9 \mathrm{mmol})$ were dissolved in DMSO (5 ml) and ethyl ether (10 ml). The resulting solution was stirred at ambient temperature for 2 h . The reaction was quenched with water and extracted with ethyl ether. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo to yield a dark red oil. In a procedure analogous to the synthesis of $\mathbf{1 8}$, the oil was placed in a 25 ml Schlenk flask and reacted with $\mathbf{6}(90.2 \mathrm{mg}, 0.253 \mathrm{mmol})$, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(1.5 \mathrm{mg}, 2.1 \mu \mathrm{~mol}), \mathrm{CuI}(1.0 \mathrm{mg}, 5.3 \mu \mathrm{~mol})$ in piperidine (5 ml). Column chromatography $\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes, 1:1) furnished $\mathbf{I}-\mathbf{3 a}(34.2 \mathrm{mg}, 30 \%)$ as a red oil. IR (Neat); $v\left(\mathrm{~cm}^{-1}\right)$ 2960, 2872, 2293, 2141, 1460, 1240. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58-7.44$ $\left(\mathrm{m}, 8 \mathrm{H}\right.$, aromatic-H), $7.35\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2 \mathrm{~Hz}\right.$, aromatic-H), $7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=2.0\right.$ Hz , aromatic- H), $5.05(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}, t-$ butyl), 1.32 ($\mathrm{s}, 18 \mathrm{H}, t$-butyl), 1.31 ($\mathrm{s}, 18 \mathrm{H}$, TMS-H). (Note: Due to the low amount of 20a, only a ${ }^{1} \mathrm{H}$-NMR was obtained before continuing on with the synthesis.) MS (EI) m / z; Calc. for $\left[\mathrm{M}^{+}\right]\left(\mathrm{C}_{71} \mathrm{H}_{71} \mathrm{CoSi}_{2}\right)$ 1038.4, Found: 1038.4.

4.7. Synthesis of 20 b

In a procedure analogous to the synthesis of 20a, 7 $(68.0 \mathrm{mg}, 76.1 \mu \mathrm{~mol})$ and $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(0.300 \mathrm{~g}, 10.9$ $\mathrm{mmol})$ were reacted in DMSO $(5 \mathrm{ml})$ and ethyl ether (10 ml). The resulting oil was placed in a 25 ml Schlenk flask and reacted with cis-1-chloro-2-(trimethylsilylethyny1)ethylene (8) ($30.0 \mathrm{mg}, 0.190 \mathrm{mmol}$), $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}$
($1.2 \mathrm{mg}, 1.7 \mu \mathrm{~mol}$), and $\mathrm{CuI}(1.0 \mathrm{mg}, 5.3 \mu \mathrm{~mol})$ in piperidine (1 ml). Column chromatography (SiO_{2}; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes, 4:1) furnished 20b ($40.4 \mathrm{mg}, 65 \%$) as a red oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2944,2855,2133,1461$, $1244,1000 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}$, aromatic-H), $7.50\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.8\right.$ Hz , aromatic-H), $7.36\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=\right.$ 1.8 Hz , aromatic-H), $6.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=11.0 \mathrm{~Hz}\right.$, alkene-H), $5.94\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=11.0 \mathrm{~Hz}\right.$, alkene-H), 4.98 (s, $5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}$), 1.32 ($\mathrm{s}, 18 \mathrm{H}, t$-butyl), 0.23 ($\mathrm{s}, 18 \mathrm{H}$, TMS-H). ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 151.00, 130.90, 127.13, 126.39, 126.17, 123.40, 120.89, 118.44, 103.73, 102.49, 92.78, 92.26, 91.27, 88.55, 84.23, 83.96, 78.94, 62.27, 61.32, 34.91, 33.99, 0.06. MS (EI) m / z; Calc. for $\left[\mathrm{M}^{+}\right]\left(\mathrm{C}_{55} \mathrm{H}_{51} \mathrm{CoSi}_{2}\right)$ 826.2861, Found: 826.2898.

4.8. Synthesis of $9 \boldsymbol{a}$

In a procedure analogous to the synthesis of 4, 20a ($34.1 \mathrm{mg}, 33 \mu \mathrm{~mol}$) was deprotected with $\mathrm{K}_{2} \mathrm{CO}_{3}(100$ $\mathrm{mg}, 0.720 \mathrm{mmol}$) in methanol (2 ml) and THF (5 ml). The resulting product was reacted with $\mathrm{Cu}(\mathrm{OAc})_{2}(200$ $\mathrm{mg}, 1.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{ml})$. Chromatography ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes, 1:1) furnished 9 a ($16.2 \mathrm{mg}, 55 \%$) as a dark red crystalline solid. M.p.: $220^{\circ} \mathrm{C}$ (dec.). IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2943,2855,2333,2144,1667,1461$, 1244. ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (d, 4 H , ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz}$, aromatic-H), $7.53\left(\mathrm{~d}, 4 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.8\right.$ Hz , aromatic-H), $7.43\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=\right.$ 1.8 Hz , aromatic-H), $4.97(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 1.34(\mathrm{~s}, 36 \mathrm{H}, t-$ butyl- CH_{3}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.18$, $130.96,127.45,126.83,126.52,123.68,92.98,89.25$, $84.52, \quad 83.91, \quad 79.23,62.31,35.17,31.26$. UV-vis $\left(\mathrm{CHCl}_{3}\right): \lambda 296\left(\varepsilon=27530 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 323(\varepsilon=$ $22787 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$). MS could not be determined due to decomposition.

4.9. Synthesis of $\mathbf{9 b}$

In a procedure analogous to the synthesis of $\mathbf{4}, \mathbf{2 0 b}$ $(40.2 \mathrm{mg}, 48.7 \mu \mathrm{~mol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(20.1 \mathrm{mg}, 0.140 \mathrm{mmol})$ were reacted in methanol (2 ml) and THF (5 ml). The resulting oil was reacted with $\mathrm{Cu}(\mathrm{OAc})_{2}(190 \mathrm{mg}, 1.05$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{ml})$. Column chromatography ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes, 1:1) furnished 9 b ($29.1 \mathrm{mg}, 88 \%$) as a dark red crystalline solid that was only stable in dilute solutions at ambient temperature. IR (Neat): v $\left(\mathrm{cm}^{-1}\right) 2956,2333,2167,1644,1584,1450,1400,1100$, 1017. ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta 7.65$ (d, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2 \mathrm{~Hz}$, aromatic-H), $7.52\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=\right.$ 1.8 Hz , aromatic-H), $7.42\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2 \mathrm{~Hz}\right.$, ${ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}$, aromatic-H), $6.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.9\right.$ Hz , alkene-H), $6.34\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.9 \mathrm{~Hz}\right.$, alkene-H), $4.95(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 1.33\left(\mathrm{~s}, 18 \mathrm{H}, t\right.$-butyl- $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.39,130.98,127.47$,
126.56, 126.3, 123.51, 123.79, 116.87, 96.46, 94.01, 93.31, 88.68, 88.19, 84.44, 84.08, 83.68, 79.20, 63.33, $62.99,35.19,31.80 . \mathrm{UV}$-vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}=333 \mathrm{~nm}$ ($\varepsilon=313$). MS could not be determined due to decomposition.

4.10. Synthesis of $\mathbf{2 1}$

To a 50 ml oven-dried Schlenk flask was added $\mathbf{1 0}$ ($200 \mathrm{mg}, 0.505 \mathrm{mmol}$) and dry THF (25 ml) under nitrogen. The flask was cooled to $-78^{\circ} \mathrm{C}$ and lithium diisopropylamide ($0.140 \mathrm{~g}, 1.28 \mathrm{mmol}$) in THF was added drop-wise over 10 min . Stirring was continued for 10 min and the solution was brought to $0^{\circ} \mathrm{C}$ at which time the solution turned cloudy. After stirring at $0^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{CuI}(240 \mathrm{mg}, 1.26 \mathrm{mmol})$, was added, the solution turned transparent and was stirred for an additional 15 min . Following cooling to $-78^{\circ} \mathrm{C}, 4-$ (bromoethynyl)-3-(triisopropylsilylethynyl)isopropylbenzene (11a) $(450 \mathrm{mg}, 1.12 \mathrm{mmol})$ or 4 -(bromoethy-nyl)-3-(triisopropylsilylethynyl)butylbenzene (11b) (682 $\mathrm{mg}, 1.64 \mathrm{mmol})$ and dry propylamine $(6.5 \mathrm{ml})$ were added successively. The resulting solution was stirred for 5 min , warmed to ambient temperature and stirred for 1 h before being quenched with water and ethyl ether. The water layer was separated and extracted with ethyl ether $(200 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. Column chromatography (SiO_{2}; hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1+10 \%$ NEt_{3}) furnished 21a ($315 \mathrm{mg}, 60 \%$) or 21b (310 mg , 57%) as dark orange oils. Compound 21a: IR (Neat): v $\left(\mathrm{cm}^{-1}\right)$ 2947, 2854, 2316, 2193, 2147, 1554, 1101, 993. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CHCl}_{3}\right): \delta 7.38\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0\right.$ Hz , aromatic-H), $7.27\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromaticH), $7.07\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}^{4}{ }^{4} \mathrm{H}_{\mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromatic-H), $5.13(\mathrm{~s}, 2 \mathrm{H}$, acetal- CH$), 5.03(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-$ H), 4.15-4.10 (m, 4H, acetal- CH_{2}), 3.82-3.78 (m, 4H, acetal- CH_{2}), 2.82 (sept, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}$, isopropyl$\mathrm{CH}), 2.09-1.98\left(\mathrm{~m}, 2 \mathrm{H}\right.$, acetal- $\left.\mathrm{CH}_{2}\right), 1.35-1.23(\mathrm{~m}, 2 \mathrm{H}$, acetal- CH_{2}), $1.20\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}\right.$, isopropyl$\mathrm{CH}_{3}$), $1.15\left(\mathrm{~s}, 42 \mathrm{H}\right.$, TIPS-H). ${ }^{13} \mathrm{C}$-NMR (75 MHz , CDCl_{3}): $\delta 149.40,132.54,130.28,126.58,126.37$, 122.92, 105.06, 97.6, 95.12, 82.55, 80.47, 78.86, 78.19, $77.60,66.93,66.92,55.29,33.97,25.76,23.50,18.71$, 11.30. MS (EI) m / z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{65} \mathrm{H}_{81} \mathrm{CoO}_{4} \mathrm{Si}_{2}\right)$ 1040.5005. Found: $1040.5015(E=2.4 \mathrm{ppm})$. Compound 21b: IR (Neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2949, 2905, 2850, 2319, 2193, 2134, 1533, 1101, $880 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $7.35\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic-H), $7.24(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $7.02\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0\right.$ $\mathrm{Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $5.13(\mathrm{~s}, 2 \mathrm{H}$, acetalCH), $5.03(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 4.17-4.12(\mathrm{~m}, 4 \mathrm{H}$, acetal$\mathrm{CH}_{2}$), $3.84-3.75\left(\mathrm{~m}, 4 \mathrm{H}\right.$, acetal- $\left.\mathrm{CH}_{2}\right), 2.61-2.51(\mathrm{~m}, 4 \mathrm{H}$, butyl- CH_{2}), $2.10-1.99\left(\mathrm{~m}, 2 \mathrm{H}\right.$, acetal- $\left.\mathrm{CH}_{2}\right), 1.60-1.50$ $\left(\mathrm{m}, 4 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{2}\right), 1.38-1.20\left(\mathrm{~m}, 4 \mathrm{H}\right.$, buryl- CH_{2}, acetal- CH_{2}), 1.15 (s, 42 H, TIPS-H), 0.89 ($\mathrm{t}, 6 \mathrm{H}$,
${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}$, butyl-CH3). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , CDCl_{3}): δ 143.46, 132.21, 131.97, 128.21, 126.39, 122.57, 104.86, 97.47, 94.99, 82.40, 80.30, 78.81, 78.11, $77.41,66.82,55.09,45.78,32.98,25.65,22.13,18.58$, 13.74, 11.16, 10.94. Elemental Analysis; Calc.: C, 75.24; H, 8.01. Found: C, 76.11 ; H, 7.95%. MS (EI) m / z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{67} \mathrm{H}_{85} \mathrm{CoO}_{4} \mathrm{Si}_{2}\right)$ 1068.5318. Found 1068.6.

4.11. Synthesis of 12a

To a 50 ml round bottom flask was added 21a (707 $\mathrm{mg}, 0.680 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(2.0 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) and THF (7 ml). The resulting solution was stirred at ambient temperature for 1 h before being quenched with water and ethyl ether. The water layer was separated and extracted with ethyl ether (50 ml). The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo to yield a dark red oil. To the oil, in a 500 ml round bottom flask, was added $\mathrm{Cu}(\mathrm{OAc})_{2}(2.70$ $\mathrm{g}, 14.8 \mathrm{mmol}$) and acetonitrile (400 ml). The resulting solution was heated to $80^{\circ} \mathrm{C}$ for 6 h . The solvent was removed in vacuo, the crude product dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a silica gel plug. Removal of the solvent in vacuo and column chromatography (SiO_{2}; hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1+10 \% \mathrm{NEt}_{3}$) furnished 12a ($228 \mathrm{mg}, 46 \%$) as a dark orange oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right.$) 2954, 2924, 2854, 2324, 2185, 1731, 1454, 1093, 1001. ${ }^{1} \mathrm{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0\right.$ Hz , aromatic- H$), 7.32\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromaticH), $7.13\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromatic-H), $5.14(\mathrm{~s}, 2 \mathrm{H}$, acetal-CH), $5.07(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-$ $\mathrm{H}), 4.16-4.08\left(\mathrm{~m}, 4 \mathrm{H}\right.$, acetal- $\left.\mathrm{CH}_{2}\right), 3.85-3.67(\mathrm{~m}, 4 \mathrm{H}$, acetal- CH_{2}), 2.83 (sept, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}$, isopropyl$\mathrm{CH}), 2.10-2.03\left(\mathrm{~m}, 2 \mathrm{H}\right.$, acetal- $\left.-\mathrm{CH}_{2}\right), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}$, acetal- CH_{2}), $1.20\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}\right.$, isopropyl$\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.43,131.68$, 131.42, 127.54, 125.19, 122.88, 97.29, 82.43, 81.23, $80.49,79.59,79.14,78.44,77.24,66.92,66.90,56.49$, 33.92, 25.74, 23.42. MS (EI) m / z Calc. for M^{+} $\left(\mathrm{C}_{47} \mathrm{H}_{39} \mathrm{CoO}_{4}\right) 726.2180$, unable to determine due to decomposition.

4.12. Synthesis of $\mathbf{1 2 b}$

In a procedure analogous to the synthesis of 12a, 21b $(1.36 \mathrm{~g}, 1.27 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(3.2 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) were reacted for 1 h in THF (10 ml). The resulting dark oil was reacted with $\mathrm{Cu}(\mathrm{OAc})_{2}(5.10 \mathrm{~g}, 28.1 \mathrm{mmol})$ for 6 h at $80^{\circ} \mathrm{C}$ in acetonitrile. Aqueous workup followed by column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1+10 \% \mathrm{NEt}_{3}$) furnished 12b $(635 \mathrm{mg}$, 66%) as a dark orange oily solid. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2955, 2927, 2855, 2120, 1717, 1559, 1489, 1107, 1003. ${ }^{1} \mathrm{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0\right.$ Hz , aromatic-H), $7.39\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromaticH), $7.13\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}^{4}{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$,
aromatic-H), $5.15(\mathrm{~s}, 2 \mathrm{H}$, acetal-CH), $5.10(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-$ H), 4.18-4.13 (m, 4H, acetal- CH_{2}), 3.85-3.67 (m, 4H, acetal- CH ,), $2.59\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl $\left.-\mathrm{CH}_{2}\right)$, 2.14-2.01 (m, 2H, acetal- CH_{2}), 1.62-1.54 (m, 4H, butyl- CH_{2}), $1.39-1.26\left(\mathrm{~m}, 4 \mathrm{H}\right.$, butyl- CH_{2}, acetal$\left.\mathrm{CH}_{2}\right), 0.93\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl- $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 143.62, 133.38, 131.67, 129.34, 125.22, 122.85, 97.37, 82.51, 82.48, 81.16, 80.56, $79.58,79.24,78.55,77.23,66.95,56.64,35.38,32.98$, 25.79, 22.20, 13.88. MS (EI) m / z Calc. for M^{+} $\left(\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{CoO}_{4}\right) 754.2493$, unable to determine due to decomposition.

4.13. Synthesis of $\mathbf{1 4 a}$

In a 100 ml round bottom flask was placed 12a (220 $\mathrm{mg}, 0.302 \mathrm{mmol}), p$-toluenesulfonic acid $(200 \mathrm{mg}, 1.05$ mmol), THF (3 ml) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$. The resulting mixture was stirred for 12 h under the exclusion of light. The mixture was quenched with water and extracted with ethyl ether (100 ml). Removal of the solvent and drying under vacuum ($10^{-1} \mathrm{mbar}$) yielded a dark red oil. To the red oil was added finely powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($270 \mathrm{mg}, 1.96 \mathrm{mmol}$), dry methanol (5 ml) and dry THF $(2 \mathrm{ml})$. The flask was cooled to $-10^{\circ} \mathrm{C}$ and dimethyl-(1-diazo-2-oxopropyl)-phosphonate (13) (270 mg, 1.41 mmol) was added drop-wise. The resulting reaction mixture was stirred for 8 h under exclusion of light. The reaction was quenched with aqueous NaHCO_{3} and extracted with ethyl ether (200 ml). The combined organic layers were dried over MgSO_{4} and the solvent was removed in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $+10 \% \mathrm{NEt}_{3}$) furnished $\mathbf{1 4 a}(117 \mathrm{mg}, 61 \%)$ as an unstable yellow crystalline solid. M.p.: unable to determine due to rapid decomposition at ambient temperatures. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 3326,2962,2916,2847,2308$, 1693, 1646, 1540, 1416, 1093. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.45\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromatic-H), $7.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic-H), $7.19(\mathrm{dd}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $5.09(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}$, alkyne-H), 2.90 (sept, 2 H , ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}$, isopropyl-CH), $1.24\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9\right.$ Hz , isopropyl-CH\}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $150.00,131.85,131.66,127.65,125.56,122.24,83.96$, $82.24,81.80,81.19,80.05,78.30,77.62,77.58,76.93$, 61.91, 59.61, 34.01, 23.46. MS (EI) m / z Calc. for M^{+} $\left(\mathrm{C}_{43} \mathrm{H}_{27} \mathrm{Co}\right) 602.1445$, unable to determine M^{+}due to decomposition.

4.14. Synthesis of $\mathbf{1 4 b}$

In a procedure analogous to the synthesis of $\mathbf{1 4 a}, \mathbf{1 2 b}$ $(635 \mathrm{mg}, 0.841 \mathrm{mmol})$ and p-toluenesulfonic acid (500 $\mathrm{mg}, 2.63 \mathrm{mmol}$) were reacted in THF (3 ml) and $\mathrm{H}_{2} \mathrm{O}(2$ $\mathrm{ml})$. The resulting dark oil was reacted with $\mathrm{K}_{2} \mathrm{CO}_{3}(740$ $\mathrm{mg}, 5.36 \mathrm{mmol})$ and $13(740 \mathrm{mg}, 3.85 \mathrm{mmol})$ in dry
methanol (5 ml) and dry THF (2 ml). Aqueous workup followed by column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1+10 \% \mathrm{NEt}_{3}$) furnished $\mathbf{1 4 b}(254 \mathrm{mg}$, 48%) as an unstable yellow crystalline solid. M.p.: unable to determine due to rapid decomposition at ambient temperatures. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 3335,2924$, 2955, 2855, 1747, 1558, 1508, 1373, 1010. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromaticH), $7.39\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromatic-H), $7.14(\mathrm{dd}$, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), 5.09 (s, $5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}$, alkyne-H), $2.59(\mathrm{t}, 4 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}$, butyl- CH_{2}), $1.64-1.51(\mathrm{~m}, 4 \mathrm{H}$, butyl$\left.\mathrm{CH}_{2}\right), 1.38-1.24\left(\mathrm{~m}, 4 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{2}\right), 0.92(\mathrm{t}, 6 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}$, bulyl- CH_{3}). ${ }^{13} \mathrm{C}-\mathrm{NMR} \quad(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 144.18,133.53,131.76,129.42,125.47$, $122.10,84.10,83.96,82.25,81.82,81.08,80.05,78.36$, $77.61,76.94,61.94,59.60,35.41,32.94,22.67,13.90 . \mathrm{MS}$ (EI) m / z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{45} \mathrm{H}_{31} \mathrm{Co}\right) 630.1758$, unable to determine M^{+}due to decomposition.

4.15. Synthesis of $\mathbf{2 2 a}$

In a 25 ml , oven-dried Schlenk flask was placed $\mathbf{1 4 a}$ $(58.5 \mathrm{mg}, 97.2 \mu \mathrm{~mol})$ and dry THF (10 ml) under nitrogen. The flask was cooled to $-78^{\circ} \mathrm{C}$ and lithium diisopropylamide ($23.0 \mathrm{mg}, 0.213 \mathrm{mmol}$) in THF was added drop-wise over 5 min . Stirring was continued for 10 min . The solution was brought to $0^{\circ} \mathrm{C}$ and turned cloudy. After stirring at $0{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{CuI}(65.0 \mathrm{mg}$, 0.342 mmol), was added and the solution turned transparent. The resulting solution was stirred for 15 min . Following cooling to $-78^{\circ} \mathrm{C}$, 11a $(117 \mathrm{mg}, 0.291$ $\mathrm{mmol})$ and dry propylamine $(1.8 \mathrm{ml})$ were added successively. The resulting solution was stirred for 5 min, before being warmed to ambient temperature, stirred for 1 h and then quenched with water and ethyl ether. The water layer was separated and extracted with ethyl ether (200 ml). The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes:EtOAc, 1:1) furnished 22a ($35.0 \mathrm{mg}, 29 \%$) as a dark orange oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2954,2916,2862,2316,1770,1554$, 1416, 1062. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}$, aromatic-H), $7.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0\right.$ Hz , aromatic-H), $7.40\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic$\mathrm{H}), 7.39\left(\mathrm{~s}, 2 \mathrm{H}\right.$, aromatic-H), $7.20\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}_{3} \mathrm{H}}=8.0\right.$ $\mathrm{Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $7.11\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $8.2 \mathrm{~Hz},{ }_{4}^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $5.13(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H})$, $2.92-2.84(\mathrm{~m}, 4 \mathrm{H}$, isopropyl- CH$), 1.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ 8.0 Hz , isopropyl- $\left.\mathrm{CH}_{3}\right), 1.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, isopropyl- CH_{3}), $1.19\left(\mathrm{~s}, 42 \mathrm{H}\right.$, TIPS-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.08,150.02,132.48,131.91,131.73$, 130.44, 127.67, 127.18, 126.49, 125.69, 122.37, 122.29, 104.84, $95.69,83.93,82.21,81.98,81.24,80.48,79.35$, $78.42,77.92,77.63,77.25,76.37,63.48,60.27,34.65$, 34.07, 23.53, 23.50, 18.81, 11.39. MS (EI) m / z Calc. for
$\mathrm{M}^{+}\left(\mathrm{C}_{87} \mathrm{H}_{87} \mathrm{CoSi}_{2}\right) 1246.5678$, unable to determine M^{+} due to decomposition.

4.16. Synthesis of $\mathbf{2 2 b}$

In a procedure analogous to the synthesis of $\mathbf{2 2 a}, \mathbf{1 4 b}$ ($155 \mathrm{mg}, 0.245 \mathrm{mmol}$), lithium diisopropylamide (64.2 $\mathrm{mg}, 0.541 \mathrm{mmol})$ in THF, CuI ($120 \mathrm{mg}, 0.632 \mathrm{mmol}$), 11b ($400 \mathrm{mg}, 960 \mu \mathrm{~mol}$) and dry propylamine (3.0 ml) were reacted in THF (50 ml). Aqueous workup followed by column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes:EtOAc, 1:1) furnished 22b ($104 \mathrm{mg}, 33 \%$) as a dark orange oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2924,2855,2115,1717,1558,1543$, 1458, 1396, 1025. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.43$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}\right.$, aromatic-H), $7.39(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}$, aromatic-H), $7.38\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0\right.$ Hz , aromatic-H), $7.28(\mathrm{~s}, 2 \mathrm{H}$, aromatic-H), $7.20(\mathrm{dd}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $7.11(\mathrm{dd}$, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), 5.12 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}$), $2.62-2.53\left(\mathrm{~m}, 8 \mathrm{H}\right.$, butyl $-\mathrm{CH}_{2}$), $1.62-1.53$ $\left(\mathrm{m}, 8 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{2}\right), 1.38-1.27\left(\mathrm{~m}, 8 \mathrm{H}\right.$, butyl $\left.-\mathrm{CH}_{2}\right), 1.19$ ($\mathrm{s}, 42 \mathrm{H}$, TIPS-H), $0.92\left(\mathrm{~m}, 12 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 144.24, 144.20, 133.57, 132.28, 132.24, 131.76, 129.43, 128.40, 127.09, 125.56, 122.16, $122.05,104.74,95.77,83.89,82.20,81.97,81.08,80.45$, 79.31, 78.43, 77.96, 77.70, 76.58, 76.36, 63.49, 60.28, 35.48, 35.43, 33.14, 32.96, 29.70, 29.35, 22.31, 22.22, 18.80, 11.38. MS (EI) m / z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{87} \mathrm{H}_{87} \mathrm{CoSi}_{2}\right)$ 1246.5678, unable to determine M^{+}due to decomposition.

4.17. Synthesis of $\mathbf{1 5 a}$

To a 25 ml , round bottom flask was added 22a (35.1 $\mathrm{mg}, 28.1 \mu \mathrm{~mol}), \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(0.120 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) and THF (3 ml). The resulting solution was stirred at ambient temperature for 1 h before being quenched with water and ethyl ether. The water layer was separated and extracted with ethyl ether $(20 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo to yield a dark red oil. To the oil, in a 100 ml round bottom flask, was added $\mathrm{Cu}(\mathrm{OAc})_{2}(160$ $\mathrm{mg}, 0.881 \mathrm{mmol})$ and acetonitrile $(100 \mathrm{ml})$. The resulting solution was heated to $80^{\circ} \mathrm{C}$ for 6 h . The solvent was removed in vacuo, the resulting mixture redissolved in CHCl_{3} and filtered through a silica gel plug. Removal of the solvent in vacuo and column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: $\mathrm{CHCl}_{3}, 1: 1$) furnished $\mathbf{1 5 a}(20.2 \mathrm{mg}, 77 \%)$ as orange needles after crystallization from CHCl_{3}. M.p.: $214{ }^{\circ} \mathrm{C}$ (dec.). IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2954,2908,2847$, 2324, 1693, 1554, 1416, 1093. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.50\left(\mathrm{~d}, 4 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.5 \mathrm{~Hz}\right.$, aromatic-H), $7.46\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic-H), $7.13(\mathrm{dd}, 4 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.5 \mathrm{~Hz}$, aromatic-H), $5.17(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}$), 2.90 (sept, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}$, isopropyl$\mathrm{CH}), 1.24\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}\right.$, isopropyl- $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ unable to determine due to limited solubility as well as a minimal quantity of material. MS (EI) m/z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{69} \mathrm{H}_{45} \mathrm{Co}\right)$, decomposition before M^{+}was recorded.

4.18. Synthesis of $\mathbf{1 5 b}$

In a procedure analogous to the synthesis of $\mathbf{1 5 a}, \mathbf{2 2 b}$ $(102 \mathrm{mg}, 81.8 \mu \mathrm{~mol})$, and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(0.23 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) were reacted for 1 h in THF (3 ml). The resulting dark oil was reacted with $\mathrm{Cu}(\mathrm{OAc})_{2}(310 \mathrm{mg}, 1.71$ mmol) in acetonitrile (200 ml). Aqueous workup followed by preparative TLC using EtOAc:hexane (1:1) as the eluent, $\mathbf{1 5 b}(35.0 \mathrm{mg}, 46 \%)$ was isolated as an orange solid. M.p.: $230{ }^{\circ} \mathrm{C}$ (dec.). IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2955$, 2950, 2820, 2235, 1725, 1555, 1075, 997. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44\left(\mathrm{~d}, 4 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromaticH), $7.41\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic-H$), 7.15(\mathrm{dd}$, $4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), 5.17 (s, $5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 2.60\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl- CH_{2}), $1.66-1.53\left(\mathrm{~m}, 8 \mathrm{H}\right.$, butyl $\left.-\mathrm{CH}_{2}\right), 1.43-1.23(\mathrm{~m}, 8 \mathrm{H}$, butyl$\left.\mathrm{CH}_{2}\right), 0.93\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl $\left.-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 144.28, 133.61, 131.90, $129.47,125.59,122.18,82.92,82.12,81.12,80.35,78.38$, 77.72, 77.69, 62.09, 35.46, 33.00, 22.24, 13.90. MS (EI) m / z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{73} \mathrm{H}_{53} \mathrm{Co}\right)$ 988.3479, unable to determine due to decomposition.

4.19. Synthesis of $\mathbf{2 3}$

In a dry 100 ml Schlenk flask, 14b (110 mg, 0.174 mmol) was dissolved in 1 ml of dry piperidine. To the solution was added $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(4.0 \mathrm{mg}, 5.7 \mu \mathrm{~mol})$, CuI ($1.3 \mathrm{mg}, 6.8 \mu \mathrm{~mol}$) and 1,2-dimethoxy-3-iodo-4(trimethylsiylethynyl)benzene (16) (200 $\quad \mathrm{mg}, \quad 0.561$ mmol). The resulting solution was stirred at ambient temperature for 8 h . The reaction mixture was quenched with water and extracted twice with ethyl ether. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}\right.$; EtOAc:hexanes, 4:1) furnished 23 ($110 \mathrm{mg}, 58 \%$) as an orange oil. IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2955,2932,2858$, 2149, 1508, 1261, 1219, 845. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.40\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromatic-H), $7.37\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic-H$), 7.14(\mathrm{dd}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $6.95(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OMe}$-aromatic-H), 6.93 (s, $2 \mathrm{H}, \mathrm{OMe}$-aromatic-H), 5.13 (s, $5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.89(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{OMe}), 2.58\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl- CH_{2}), 1.61$1.54\left(\mathrm{~m}, 4 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{2}\right), 1.38-1.30\left(\mathrm{~m}, 4 \mathrm{H}\right.$, butyl $\left.-\mathrm{CH}_{2}\right)$, $0.91\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl $\left.-\mathrm{CH}_{3}\right), 0.30(\mathrm{~s}, 18 \mathrm{H}$, TMS-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.33$, $149.26,144.33,133.81,131.95,129.70,129.63,125.68$, 122.66, 119.16, 118.63, 114.92, 114.33, 103.74, 97.69, 93.01, $86.16,84.22,81.86,81.40,80.47,79.03,77.95$, $62.58,61.38,56.33,56.25,35.68,33.24,22.48,14.15$,
0.50. MS (EI) m / z Calc. for $\mathrm{M}^{+}\left(\mathrm{C}_{71} \mathrm{H}_{63} \mathrm{CoO}_{4} \mathrm{Si}_{2}\right)$ 1094.3597, unable to determine M^{+}due to decomposition.

4.20. Synthesis of $\mathbf{1 7}$

In a procedure analogous to the synthesis of 15a, 23 $(110 \mathrm{mg}, 100 \mu \mathrm{~mol})$ and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}(0.30 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) were reacted for 1 h in THF (3 ml). The resulting dark oil was reacted with $\mathrm{Cu}(\mathrm{OAc})_{2}(364 \mathrm{mg}, 2.00$ mmol) in acetonitrile (200 ml). Aqueous workup followed by column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: EtOAc, 1:1) furnished $17(76.5 \mathrm{mg}, 88 \%)$ as orange coffin shaped crystals after crystallization from CHCl_{3}. M.p.: $205^{\circ} \mathrm{C}$ (dec.). IR (Neat): $v\left(\mathrm{~cm}^{-1}\right) 2954,2924$, 2855, 2155, 1504, 1269, 1215, 853. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, aromatic-H), $7.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, aromatic-H), $7.17(\mathrm{dd}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}$, aromatic-H), $7.13(\mathrm{~s}$, 2 H , OMe aromatic-H), $6.95(\mathrm{~s}, 2 \mathrm{H}$, OMe aromatic-H), 5.10 (s, 5H, Cp-H), 3.98 (s, 6H, OMe), 3.91 (s, 6H, OMe), $2.60\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl- $\left.\mathrm{CH}_{2}\right)$, $1.61-$ $1.54\left(\mathrm{~m}, 4 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{2}\right), 1.39-1.30\left(\mathrm{~m}, 4 \mathrm{H}\right.$, butyl- $\left.\mathrm{CH}_{2}\right)$, $0.92\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}\right.$, butyl- CH_{3}). ${ }^{13} \mathrm{C}$-NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.84,148.82,144.15,133.59,131.64$, $129.45,125.48,122.39,122.22,116.83,113.56,111.99$, 92.91, 90.17, 87.44, 83.97, 83.64, 81.99, 81.11, 80.16, $78.85,78.56,77.70,62.17,61.50,56.14,56.04,35.40$, 31.54, 22.19, 13.86. MS (EI) m / z Calc. for M^{+} $\left(\mathrm{C}_{65} \mathrm{H}_{45} \mathrm{CoO}_{4}\right) 948.2650$, unable to determine due to decomposition.

4.21. Experimental details for the crystal structure determinations of 9 a and 17

X-ray intensity data for $\mathbf{9 a}$ and $\mathbf{1 7}$ were measured in ω scan mode using a Bruker SMART APEX CCD-based diffractometer system with $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation at $\lambda=$ $0.71073 \AA$, at 190(2) K. Raw data frame integration and Lorentz and polarization corrections were performed with saint+. Structure solution (direct methods in all cases) and refinement against F^{2} using all data was performed with shelxtl.

4.21.1. Crystal data for $9 \boldsymbol{a}$

The cyclobutadiene complex $\left(\mathrm{C}_{65} \mathrm{H}_{53} \mathrm{Co}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the $\mathrm{FW}=977.93$ was isolated as red plate crystal with a dimension of $0.25 \times 0.20 \times 0.08 \mathrm{~mm}^{3}$). The unit cell was tetragonal featuring the space group $I 4_{1}$ with cell dimensions of $a=19.156(5) \AA, b=19.156(5) \AA, c=$ 15.842(7) $\AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=5814(3) \AA^{3}$ and $Z=4$ molecules in the unit cell. The calculated density, $D_{\text {calc }}=1.117 \mathrm{~g} \mathrm{~cm}^{-3}$. Intensity data covering the full sphere of reciprocal space were measured to $\Theta=1.95-25.04^{\circ}$; 12129 reflections were collected, of which 4807 were independent. No absorption correction
was applied ($\mu=0.424 \mathrm{~mm}^{-1}$). Data refinement produced $R_{1}=0.0491$, $w R_{2}(I>2 \sigma(I))=0.1031 ; ~ G o F=$ 1.019; 4807 data with 359 parameters were refined with seven restraints. Max $/ \mathrm{min}$ residual electron density was determined to $0.450 /-0.206$ e \AA^{-3}.

4.21.2. Crystal data for 17a

The cyclobutadiene complex $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{CoO}_{4}$ of the $\mathrm{FW}=947.26$ was isolated as red block-like crystal, $\left(0.36 \times 0.26 \times 0.12 \mathrm{~mm}^{3}\right)$. The unit cell was monoclinic featuring the space group $C c$ with cell dimensions of $a=32.447(3) \AA, b=27.437(3) \AA, c=14.042(1) \AA, \alpha=$ $90^{\circ}, \beta=108.354(2)^{\circ}, \gamma=90^{\circ}, V=11865(2) \AA^{3}$ and $Z=$ 8 molecules in the unit cell. The calculated density, $D_{\text {calc }}=1.377 \mathrm{~g} \mathrm{~cm}^{-3}$. Intensity data covering the full sphere of reciprocal space were measured to $\Theta=1.95-$ $24.24^{\circ} ; 32639$ reflections were collected, of which 13840 were independent. Semiempirical absorption correction was applied with maximum and minimum transmission of 0.8309 and 0.5449 , respectively. Data refinement produced $\quad R_{1}=0.0491, \quad w R_{2} \quad(I>2 \sigma(I))=0.2582$; $\mathrm{GoF}=1.049 ; 1461$ parameters were refined, with 52 restraints. Max/min residual electron density was determined to $1.873 /-0.775 \mathrm{e}^{-3}$.

5. Supporting information

Crystallographic information files (CIFs for 9a (CCDC No. 154093) and 17 (CCDC No. 198703)). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

We thank the National Science Foundation (PI Bunz, CAREER, CHE 9981765) and the USC NanoCenter for generous funding. U.H.F.B. is a Camille Dreyfus Teacher-Scholar (2000-2004).

References

[1] (a) M. Laskoski, G. Roidl, M.D. Smith, U.H.F. Bunz, Angew. Chem. 113 (2001) 1508;
(b) M. Laskoski, G. Roidl, M.D. Smith, U.H.F. Bunz, Angew. Chem. Int. Ed. Engl. 40 (2001) 1460;
(c) M. Laskoski, U.H.F. Bunz, Chem. Commun. (2001) 2590.;
(d) M. Laskoski, U.H.F. Bunz, J. Org. Chem. 66 (2001) 5174;
(e) M. Laskoski, W. Steffen, J.G.M. Morton, M.D. Smith, U.H.F. Bunz, J. Am. Chem. Soc. 124 (2002) 13814.
[2] (a) M.B. Nielsen, F. Diederich, Synlett (2002) 544.; (b) R.E. Martin, F. Diederich, Angew. Chem. Int. Ed. Engl. 38
(1999) 1350 ;
(c) F. Diederich, L. Gobbi, Top. Curr. Chem. 201 (1999) 43;
(d) R.R. Tykwinski, F. Diederich, Liebigs Ann. Receuil. (1997) 649 .;
(e) F. Diederich, Nature 369 (1994) 199;
(f) F. Diederich, Y. Rubin, Angew. Chem. Int. Ed. Engl. 31 (1992) 1101;
(g) M.B. Nielsen, N.N.P. Moonen, C. Boudon, J.P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Chem. Commun. (2001) 1848; (h) M.B. Nielsen, M. Schreiber, Y.G. Back, P. Seiler, S. Lecomte, C. Boudon, R.R. Tykwinski, J.P. Gisselbrecht, V. Gramlich, P.J. Skinner, C. Bosshard, P. Günter, M. Gross, F. Diederich, Chem. Eur. J. 7 (2001) 3263;
(i) J. Anthony, C.B. Knobler, F. Diederich, Angew. Chem. Int. Ed. Engl. 32 (1993) 406;
(j) Y. Rubin, C.B. Knobler, F. Diederich, Angew. Chem. Int. Ed. Engl. 30 (1991) 698.
[3] (a) R. Boese, J.R. Green, J. Mittendorf, D.L. Mohler, K.P.C. Vollhardt, Angew. Chem. 104 (1992) 1643;
(b) R. Boese, J.R. Green, J. Mittendorf, D.L. Mohler, K.P.C. Vollhardt, Angew. Chem. Int. Ed. Engl. 31 (1992) 1643;
(c) R. Diercks, J.C. Armstrong, R. Boese, K.P.C. Vollhardt, Angew. Chem. 98 (1986) 270;
(d) R. Diercks, J.C. Armstrong, R. Boese, K.P.C. Vollhardt, Angew. Chem. Int. Ed. Engl. 25 (1986) 268;
(f) T.X. Neenan, G.M. Whitesides, J. Org. Chem. 53 (1988) 2489.
[4] (a) L.T. Scott, M. Unno, J. Am. Chem. Soc. 112 (1990) 7823;
(b) L.T. Scott, M.J. Cooney, D. Johnels, J. Am. Chem. Soc. 112 (1990) 4054;
(c) A. De Meijere, S. Kozhushkov, T. Haumann, R. Boese, C. Puls, M.J. Cooney, L.T. Scott, Chem. Eur. J. 1 (1995) 124.
[5] (a) Y. Rubin, T.C. Parker, S.J. Pastor, S. Jalisatgi, C. Boulle, C.L. Wilkins, Angew. Chem. 110 (1998) 1353;
(b) Y. Rubin, T.C. Parker, S.J. Pastor, S. Jalisatgi, C. Boulle, C.L. Wilkins, Angew. Chem. Int. Ed. Engl. 37 (1998) 1226;
(c) J.E. Anthony, S.T. Khan, Y. Rubin, Tetrahedron Lett. 38 (1997) 3499;
(d) J.D. Tovar, N. Jux, T. Jarrosson, S.I. Khan, Y. Rubin, J. Org. Chem. 62 (1997) 3432;
(e) Y. Tobe, K. Kubota, K. Naemura, J. Org. Chem. 62 (1997) 3430.
[6] (a) M.M. Haley, J.J. Pak, S.C. Brand, Top. Curr. Chem. 201 (1999) 81 ;
(b) M.M. Haley, M.L. Bell, J.J. English, C.A. Johnson, T.J.R. Weakley, J. Am. Chem. Soc. 119 (1997) 2956;
(c) M.M. Haley, S.C. Brand, J.J. Pak, Chemistry 109 (1997) 864;
(d) M.M. Haley, S.C. Brand, J.J. Pak, Angew. Chem. Int. Ed. Engl. 36 (1997) 836;
(e) W.B. Wan, S.C. Brand, J.J. Pak, M.M. Haley, Chem. Eur. J. 6 (2000) 2044;
(f) W.B. Wan, M.M. Haley, J. Org. Chem. 66 (2001) 3893;
(g) S.A. Sarkar, J.J. Pak, G.W. Rayfield, M.M. Haley, Chem. Mater. 11 (2001) 2943.
[7] (a) T.J.J. Müller, H.J. Lindner, Chem. Ber. 129 (1996) 607;
(b) Y.M. Zhao, R.R. Tykwinski, J. Am. Chem. Soc. 121 (1999) 458;
(c) S. Eisler, R.R. Tykwinski, Angew. Chem. 111 (1999) 2138;
(d) S. Eisler, R.R. Tykwinski, Angew. Chem. Int. Ed. Engl. 38 (1999) 1940;
(e) S. Eisler, R.R. Tykwinki, J. Am. Chem. Soc. 122 (2000) 10736.
[8] (a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 16 (1975) 4467;
(b) L. Cassar, J. Organomet. Chem. 93 (1975) 253;
(c) H.A. Dieck, R.F. Heck, J. Organomet. Chem. 93 (1975) 259.
[9] (a) L. Kloppenburg, D. Song, U.H.F. Bunz, J. Am. Chem. Soc. 120 (1998) 7973;
(b) U.H.F. Bunz, Acc. Chem. Res. 34 (2001) 998;
(c) U.H.F. Bunz, Chem. Rev. 100 (2000) 1605.
[10] (a) P. Siemsen, R.C. Livingston, F. Diederich, Angew. Chem. 112 (2000) 2740;
(b) P. Siemsen, R.C. Livingston, F. Diederich, Angew. Chem. Int. Ed. Engl. 39 (2000) 2633.
[11] (a) S. Ohira, Synth. Commun. 19 (1989) 561;
(b) D.F. Taber, Y. Wang, J. Am. Chem. Soc. 119 (1997) 22;
(c) S. Müller, B. Liepold, G.J. Roth, H.J. Bestmann, Synlett 6 (1996) 521;
(d) D.G. Brown, E.J. Velthuisen, J.R. Commerfeld, R.G. Brisbois, T.R. Hoye, J. Org. Chem. 61 (1996) 2540.
[12] J.S. Moore, Acc. Chem. Res. 30 (1997) 402.
[13] (a) W.J. Youngs, C.A. Tessier, J.D. Bradshaw, Chem. Rev. 99 (1999) 3153 ;
(b) U.H.F. Bunz, V. Enkelmann, Chem. Eur. J. 5 (1999) 263;
(c) Q. Zhou, P.J. Carroll, T.M. Swager, J. Org. Chem. 59 (1994) 1294.
[14] (a) N.Z. Huang, F. Sondheimer, Acc. Chem. Res. 15 (1982) 96; (b) F. Sondheimer, Acc. Chem. Res. 5 (1972) 81.
[15] (a) S. Höger, A.D. Meckenstock, H. Pellen, J. Org. Chem. 62 (1997) 4556;
(b) S. Rosselli, A.D. Ramminger, T. Wagner, B. Silier, S. Wiegand, W. Häussler, G. Lieser, V. Scheumann, S. Höger, Angew. Chem. 113 (2001) 3233;
(c) S. Rosselli, A.D. Ramminger, T. Wagner, B. Silier, S. Wiegand, W. Häussler, G. Lieser, V. Scheumann, S. Höger, Angew. Chem. Int. Ed. Engl. 40 (2001) 3141;
(d) S. Höger, V. Enkelmann, Angew. Chem. 107 (1995) 2919;
(e) S. Höger, V. Enkelmann, Angew. Chem. Int. Ed. Engl. 34 (1995) 2713.
[16] (a) R.D. Adams, B. Qu, M.D. Smith, Inorg. Chem. 40 (2001) 2932;
(b) Y. Rubin, C.B. Knobler, F. Diederich, J. Am. Chem. Soc. 112 (1990) 1607;
(c) M.M. Haley, B.L. Langsdorf, Chem. Commun. (1997) 1121;
(d) S.M. AlQaisi, K.J. Galat, M.H. Chai, D.G. Ray, P.L. Rinaldi,
C.A. Tessier, W.J. Youngs, J. Am. Chem. Soc. 120 (1998) 12149;
(e) D.M. Zhang, D.B. Mc Conville, J.M. Hrabusa, C.A. Tessier, W.J. Youngs, J. Am. Chem. Soc. 120 (1998) 3506.
[17] (a) U.H.F. Bunz, Top. Curr. Chem. 201 (1999) 131;
(b) U.H.F. Bunz, Y. Rubin, Y. Tobe, Chem. Soc. Rev. 28 (1999) 107;
(c) M. Laskoski, W. Steffen, J.G.M. Morton, M.D. Smith, U.H.F. Bunz, Angew. Chem. 114 (2002) 2484;
(d) M. Laskoski, W. Steffen, J.G.M. Morton, M.D. Smith, U.H.F. Bunz, Angew. Chem. Int. Ed. Engl. 41 (2002) 2378;
(e) M. Altmann, U.H.F. Bunz, Angew. Chem. 107 (1995) 603;
(f) M. Altmann, U.H.F. Bunz, Angew. Chem. Int. Ed. Engl. 34 (1995) 569.
[18] For the synthesis of tetraethynylated cyclobutadiene complexes see (a) M. Laskoski, J.G.M. Morton, M.D. Smith, U.H.F. Bunz, J. Organomet. Chem. 652 (2002) 21. (b) U.H.F. Bunz, G. Roidl, M. Altmann, V. Enkelmann, K.D. Shimizu, J. Am. Chem. Soc. 121 (1999) 10719.
[19] J.M. Hunter, J.L. Fye, E.J. Roakamp, M.F. Jarrold, J. Phys. Chem. 98 (1994) 1810.
[20] R. Berscheid, F. Vögtle, Synthesis (1992) 58.
[21] (a) R.F. Curtis, J.A. Taylor, Tetrahedron Lett. 25 (1968) 2919;
(b) R. Eastmond, D.R.M. Walton, Tetrahedron 28 (1972) 4591;
(c) L.T. Scott, M.J. Cooney, in: P.J. Stang, F. Diederich (Eds.), Modern Acetylene Chemistry, VCH, Weinheim, 1996, p. 347.

[^0]: * Corresponding author. Present address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 303320400, USA. Tel.: + 1-803-777-8436; fax: + 1-803-929-0267.

 E-mail addresses: bunz@mail.chem.sc.edu, uwe.bunz@chemistry.gatech.edu (U.H.F. Bunz).

